Robert O Young DSc, PhD, Naturopathic Practitioner
VINEGAR OR ACETALDEHYDE – A COMMON AND POTENT NEUROTOXIN
Updated: Jun 30, 2022
A SECONDARY METABOLITE OF SUGAR CONSUMPTION
How to prevent the damaging effects of sugar consumption, smoking, alcohol consumption, and air pollution
Overcoming Addiction
Acetaldehyde is hardly a household word in America, yet it is one of the most common neurotoxins in the lives of tens of millions of people. It is a simple substance its chemical formula is CH3CHO yet acetaldehyde insidiously promotes damage to brain structure and function through numerous pathways.

Sources of Vinegar or Acetaldehyde
There are five main routes that bring acetaldehyde (abbreviated here as “AH”) into the human brain. These are sugar consumption, alcohol consumption, Candida “the yeast syndrome,” exhaust from cars and trucks, and cigarette smoking.
Ethanol (more commonly known as alcohol) is the chemical contained in beer, wine, liquor and liqueurs that gets people drunk. These beverages serve as carriers to get ethanol into the drinker’s brain, promoting some degree of intoxication.
Once in the body, alcohol is broken down into carbon dioxide and water. However, this process takes time and occurs in several steps. The first step occurs primarily in the liver, although other organs such as the brain and kidney can also perform this stage of alcohol detoxification to a slight extent. An enzyme called “alcohol dehydrogenase” converts alcohol into AH. Then another enzyme “aldehyde dehydrogenase” must break the AH down into acetate. Acetate can then serve as a fuel in cellular energy production. (Acetate is a form of acetic acid, the acid that makes vinegar sour.)
However, the conversion of AH to acetate does not always occur quickly or smoothly and therein lies the problem.
Research over the last several decades has shown that alcoholics tend to rapidly convert alcohol to AH, but then convert AH to acetate very slowly, thus giving AH a chance to work its mischief in the body.[1] And depending on a person’s genetics, nutritional status, and exposure to other chemicals such as formaldehyde, which also utilize aldehyde dehydrogenase for their detoxification, even non-alcoholics may have difficulty rapidly detoxifying AH.
The second major route of AH into the brain is through its production by a yeast called Candida albicans. Candida is known to occur in the intestinal tract of virtually all humans to some degree. When present only in small amounts, being kept in check by a healthy immune system and the so-called “friendly flora,” such as Acidophilus and Bifidus bacteria, Candida is relatively harmless. Yet due to the modern overuse of antibiotics, birth control pills, and cortisone/prednisone drug therapy, as well as excessive stress (which naturally produces excess cortisone in the body), sugar consumption and malnutrition, millions of Americans now suffer from an excessive growth of Candida in their intestines the so-called “yeast syndrome.”[2]
Candida thrives by fermenting sugars to produce energy.
Unfortunately for the humans who harbor large colonies of Candida in their gut, the waste by-product of this sugar fermentation by Candida is AH.[3] Biochemical research has shown that this AH may combine with red blood cells, proteins, enzymes, and other substances present in the gut or gut lining, and thus travel through the bloodstream to reach more distant parts of the body such as the brain.[3]
Research has also shown that AH can then detach from the red blood cells or proteins it traveled with through the bloodstream, thus enabling AH to damage cells far from the site of its intestinal production by Candida.[3]
For those suffering from the yeast syndrome, the ingestion of beer, wine, and liqueurs provides a double-barreled dose of AH. Not only is the alcohol in these beverages turned into AH, but the malt and grain in beer and the sugar in wine and liqueurs provide excellent fuel for Candida to produce the energy it needs to live.[2] More AH is the inevitable by-product of the yeast’s sugar fermentation.
When oil, gasoline, diesel fuel, and natural gas are burned, ending up in the air, AH is produced.[4] Thus, another major route of entry into the body for AH is through inhaling air laden with vehicle and factory exhaust. People who spend hours commuting in dense freeway traffic, professional drivers such as truck and taxi drivers in urban areas, and even those who live or work in heavily trafficked areas or near freeways or major streets are especially at risk for inhaling small but significant chronic levels of AH.
AH is also produced through the burning of tobacco.[7] Thus, heavy cigarette smokers are also at risk of inhaling AH through the inhaled smoke. And while the amounts of AH inhaled through auto exhaust and cigarette smoke may be small compared to that from alcohol, research shows that low-dose chronic AH exposure may still be sufficient to gradually damage proteins, enzymes and other cellular structures in the brain and other organs.[21]
How Vinegar or Acetaldehyde Damages the Brain There are many ways that acetaldehyde (AH) can gradually damage brain structure and function through chronic, low-dose AH exposure. The following are some of them.
Acetaldehyde alters red blood cell structure. It has been known since 1941 that AH easily combines with red blood cell membrane proteins to convert the red blood cells into a “time-release capsule” for AH, releasing the AH in the body far from the site where it attached to the red blood cell.[3]
As this happens, however, the membrane covering the red blood cell becomes stiffer.[21] Yet in order to travel through the capillaries, which are the smallest blood vessels and which feed the trillions of individual cells, the red blood cell must be able to fold or deform. The average red blood cell diameter is 7 microns; yet a typical capillary is only 2 microns in diameter. Red blood cells stiffened through chronic AH exposure will have difficulty deforming sufficiently to pass through capillaries. Consequently, red blood cell-carried oxygen to many cells is reduced.[3] (Our brains require 20% of all the oxygen we breathe!)
In addition, the work of K.K. Tsuboi and colleagues has shown that AH forms stable combinations with hemoglobin in red blood cells. This reduces the ability of red blood cells to accept, hold, and transport oxygen through the bloodstream, which is their primary function.[5]
Acetaldehyde decreases the ability of the protein tubulin to assemble into microtubules.[6] Microtubules are long, thin, tube-like structures that serve several functions in the brain cell. They help provide structural support to the nerve cell, somewhat like girders in a bridge or a building, keeping the nerve cell and the dendrites semi-rigid. Dendrites are the feathery-looking extensions from the main body of the nerve cell which connect nerve cells to each other, with some neurons connecting through dendrites to as many as 100,000 other neurons. Microtubules also serve to transport nutrients and biochemical raw materials manufactured in the cell body to the dendrites. When this raw material transport is compromised, the dendrites will gradually atrophy and die off.
Two classic examples of brain pathology involving degeneration of the dendrites in humans are chronic alcoholic brain damage and Alzheimer’s disease. Acetaldehyde induces a deficiency of vitamin B1. Thiamin, or Vitamin B1, is so critical to brain and nerve function it is often called the “nerve vitamin.” AH has a very strong tendency to combine with B1, as the work of Herbert Sprince, M.D. (discussed below) has shown.[7] Unfortunately, in detoxifying AH through combination with it, B1 is destroyed. Moderately severe B1 deficiency in humans leads to a group of symptoms called Wernicke-Korsakoff syndrome.[9]
This syndrome is characterized by mental confusion, poor memory, poor neuromuscular coordination, and visual disturbances. Its primary accepted cause is chronic alcoholism. B1 is also necessary for the production of ATP bioenergy in all body cells including the brain, and the brain must produce and use 20% of the body’s energy total, even while asleep. Vitamin B1 is also essential for production of acetylcholine. Acetylcholine is one of the brain’s major neurotransmitters, facilitating optimal memory, mental focus and concentration, and learning. Alzheimer’s disease represents a rather extreme case of memory loss and impaired concentration due to destruction of acetylcholine-using brain cells.
In a classic experiment reported in 1942, R.R. Williams and colleagues found that even mild B1 deficiency in humans continued over a long period of time (the experiment ran six months) produces symptoms including apathy, confusion, emotional instability, irritability, depression, feelings of impending doom, fatigue, insomnia, and headaches[8] all symptoms of less-than-optimal brain function.
